If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+16x+5=0
a = 6; b = 16; c = +5;
Δ = b2-4ac
Δ = 162-4·6·5
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{34}}{2*6}=\frac{-16-2\sqrt{34}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{34}}{2*6}=\frac{-16+2\sqrt{34}}{12} $
| (n)=6n-4 | | 7(-3x-2)=49 | | 12x-3x=4x+45 | | 2x+2(3x-26)=180 | | 9x+6=7x+15x= | | x-(2/5x)+21=x+(1/8x) | | 3x/23=48/92 | | 40=4u-8 | | P^2+4p=10 | | 5(x-2)=x+2x+1 | | 8n2+3=-8 | | 4.8=1.2x-1.2 | | x-2/2=4/5 | | 7x-5x+7=4x-1 | | -0.65a+8=3.9 | | 9x+x-2x-7=4x+6+3 | | -0.65(a+8)=3.9 | | 1(x+2)-(1)x-(-1)=3+0x | | 3x+12=20+2x | | -4(x+7)=24 | | 1(x+(-2))=(-6)x+4 | | 5^3x=28.8 | | 7x-1+4x+1+3x-2=180 | | (2)x+1(x+4)=(3)x+3 | | 4×3x=48 | | 4x²+6=40 | | 65.2-6.8x=3.2x=24.2 | | F(x)=625-16x2 | | 8=8p-4p | | 7w+20=4w+26 | | n2=-36 | | 4x-3/12=5/4 |